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Abstract-A mixture theory based on the ensemble-averaging technique is proposed for studying the 
thermal behaviour of heterogeneous media. Balance equations with partial heat fluxes and interaction 
terms are introduced for a two-component medium. Relations between these quantities and the ensemble- 
averaged (mean) temperatures of separate components are derived. The limits of application of widely 
used postulates of proportionality of the interaction term to difference in mean temperature of components 
is discussed. The effective conductivities of components in the mixture and the interaction coefficient are 
introduced and related to the so-called microstructure functions, which are functions of the microgeometry 
of the medium and the thermal properties of its components. Examples of the application of the theory to 

‘? the calculation of the mean properties of a heterogeneous medium are presented. 

1. INTRODUCTION 

The behaviour and properties of heterogeneous media 
have attracted the attention of many investigators due 
to.the complexity of the problem and the wide occur- 
rence of the media in engineering applications. The 
macroscopic approach to the description of the pro- 
cesses is usually followed and two different continuum 
models have been proposed. The first model, often 
called the pseudohomogeneous model, treats the het- 
erogeneous material as a single phase with certain 
effective properties. Examples of this model can easily 
be found, for example, in many problems of heat 
conduction in heterogeneous media [l-4]. It was 
found that the medium, when looked at from the 
macroscopic point of view, behaves in a nonlocal and 
memory way [3]. The boundary effects can also be 
observed [5]. 

In the second model, called the mixture model, com- 
ponents of the heterogeneous medium are envisioned 
as forming continua coexisting at every point in the 
medium [&lo]. These continua are described by 
different effective properties and are mutually inter- 
acting. This way of modelling processes in het- 
erogeneous media is popular, for example, in con- 
duction-convection problems of heat transfer, flow 
problems of suspensions, filtration in porous media, 
and many others. Naturally, it is suspected that this 
way of continuum modelling a heterogeneous medium 
will also lead to a similar kind of effect as met with the 
pseudohomogeneous model. However, it is interesting 
what kind of deeper relations exist between the mix- 
ture and pseudohomogeneous models, and to cal- 
culate macroscopic properties of a heterogeneous 
medium knowing the microstructure of the medium 
and the properties of its components. 

If we focus on a heat transfer process and the mix- 
ture approach then description of the process must 
include : 

(9 

(ii) 

Formulation of energy balance equations in 
which mean (partial) heat fluxes and temperatures 
of the separate phases appear as well as terms of 
the energy exchange between them. 
Constitutive relations between the mean (partial) 
heat fluxes and phase energy interchange term 
and mean temperatures of the components. 

The answer to the above problems is by no means 
simple and often based on more or less reliable pos- 
tulates. If it is treated rigoriously it can be analyzed 
only when a cohduction mode of heat transfer is 
present. Even then the microgeometry of the het- 
erogeneous medium places serious limitations on the 
solution of the problems. Thus, originally only two- 
[l 1,121 and three-component [ 131 laminates have been 
studied. The mixture formulation was then applied to 
unidirectional fiber-reinforced composites of different 
fiber cross-section and different fiber distribution in a 
matrix [14, 151. The nonlinear form of the mixture 
theory for this kind of heterogeneous media, following 
on from the temperature dependence of the fiber 
properties, has been proposed in ref. [16]. The results 
of these investigations proved to be very useful in 
forecasting temperature fields in these kinds of com- 
posite. In all of the above-mentioned approaches the 
periodicity assumption for the structure of the media 
and the volume-averaging technique have been util- 
ized. Moreover, only conduction along laminae and 
fibers has been studied. 

It is also worth mentioning another approach to 
solving previously discussed problems associated with 
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NOMENCLATURE 

%I effective thermal diffusivity, &f/c., &f effective (partial) thermal conductivity 

LX? distribution of components in the of ith component 
medium (configuration) <, q point location vectors in the local 

c volumetric specific heat, coordinate system 
c,~ = {c} = effective specific heat (for the (Pl, $2, $20 microstructure functions 
medium) tortuosity vector 

G Green function ; volume of the medium. 
1 characteristic microdimension 

9 heat flux, {q}[ = mean (partial) heat 
flux in ith component Other symbols 

t time w interaction coefficient, L?J$, for a 
T temperature, { T}i = mean (partial) laminated composite, equation (52) 

temperature of ith component 9 interaction term 
V volume fraction 

= 
1 unit second-order tensor, 1, = unit 

X point location vector. vector along z-coordinate axis 5, 
V, (V,) vector differential operator (nabla) 

Greek symbols in global (local) coordinate system 
0; characteristic function for ith ensemble averaging 

component Ii* conditional ensemble averaging 
a thermal conductivity, 1, = reference ( >1 averaging over volume of the reference 

thermal conductivity, 1 = i-1, particle 
1 ef effective thermal conductivity of the a,, 8, differentiation with respect to space 

medium coordinates and time. 

mixture formulation of heat transfer in heterogeneous 2. THE ENERGY BALANCE EQUATIONS FOR 
media as proposed by Buyevich and coworkers [17- THE MIXTURE FORMULATION 
211. With this approach the mean heat transfer in 
different components of the medium is not treated on 
the same footing. For example, in the two-component, 
granular medium studied the continuum phase associ- 
ated with grains is assumed to be non-conductive, the 
conductive mode being only retained for heat transfer 
in the matrix. However, it is then not clear what kind 
of limitations, besides strictly geometrical ones, are 
associated with such an assumption. 

In this paper heat conduction in a two-component 
medium is studied using the mixture formulation. No 
a priori limitations referring to the medium micro- 
geometry are assumed. In Section 2 the ensemble- 
averaging technique is used to formulate the energy 
balance equations describing heat transfer processes 
in two components. In Section 3 the problem of exist- 
ing relations between mean (partial) heat fluxes in 
the components, the energy interchange term and the 
mean temperatures of the components is addressed 
and thoroughly discussed. In Section 3 it is shown 
how quantities appearing in the previously proposed, 
pseudohomogeneous formulation of heat conduction 
in heterogeneous materials [3] can be utilized in the 
study of problems of heat transfer in heterogeneous 
media when the mixture formulation is applied. Sec- 
tion 4 presents examples of application of the theory 
in calculation of the interaction coefficient for different 
kind of composite materials. Finally, Section 5 pro- 
vides a brief summary of the main results. 

Consider an inhomogeneous medium Q. This med- 
ium is thermally affected by the environment on its 
boundary. The inner structure of the medium may be 
regular (periodic) or irregular (chaotic). One strictly 
determined distribution of components in volume Q 
with respect to its boundary is understood as a differ- 
ent configuration LZZ and treated as an element of the 
sample space [3]. The configuration may be described, 
for example, by the so-called characteristic function 
0,(x 1 d) which assumes a value equal to unity inside 
thejth component, and zero otherwise. 

The ensemble-averaged (mean) value of any func- 
tion f(t, x 1 d) over the sample space may be defined 
as 

Cf(t> x)> = Sf(t> x I 4~64 dud (1) 

where p(d) is the probability density function for 
configuration &. 

For each configuration d of a two-component 
medium the heat conduction equation can be formally 
written as 

-V*q(t,x I d) = c(x I d)d,T(t,x 1 d) (2) 

-q(t, x 1 cd) = A(t, x I d)VT(t, x I d) (3) 

where 

n(t,x]d) =~,o,(xid)+a,~~(x]~) (4) 

c(t,xld) = c,0,(xIsf)+c,0,(x(d). (5) 
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The initial and boundary conditions are assumed to 3. CONSTITUTIVE RELATIONS FOR MIXTURE 

be as follows : THEORY 

T(O,x]d) = T, inQfort=O (6) 

q(t,x 1 d)*n+a(x)T(t,x 1 d) = P(t,x) 0nXL 

(7) 

Dirichlet-, Neumann- and Cauchy-type boundary 
conditions may be obtained by the proper choice of 
functions c( and p. Both of these functions are treated 
as independent of the configuration of the 
components. 

Equations (2), (3), (6) and (7) were multiplied in 
turn by 0,(x 1 d) and &(x 1 d), and subsequently 
ensemble-averaged over all possible configurations of 
the heterogeneous medium. In this way two energy 
balance equations, each corresponding to a separate 
component, were obtained. After some manipulation 
the equations may be written as follows : 

The relations between the tortuosity vectors and 
the interaction term on the one hand and the mean 
temperatures of the components on the other should 
in general be nonlocal [3]. This means that z,(x, t), 

7,(x, t) and Y-(x, t) should depend not only on the 
gradients or time derivatives of {B,T} and {f&T} at 
point x and time t, but also on the whole temperature 
distribution {&T} and {B,T} and its variation with 
time, i.e. its history. It can also be observed easily that 
the pertinent constitutive relations could be derived 
directly from definitions (10) and (11) if the relation 
between the local temperature T(t, x 1 d) and the 
component mean temperature {r}t (or {O,T}) is 
known. In this paper a special case of slowly varying 
(in time and space) temperature fields {T}, will be 
considered. It is the case that was studied in the 
majority of papers on the subject [ll, 12, 161. 

V.l,(v{a,T}+z,)-c,a,{e,T} = r (8) 

V.~~(V{HZT}+22)-C2a,{e,T} = -r (9) 

where 

and 

zi= -{W&T} i= 1,2 (10) 

Y = -{Vf!ll*q} = {VO,.q}. (11) 

The quantities { Q1 T} and { B,T} appearing in the above 
equations are proportional to the mean (partial) tem- 
peratures of the components. Noting that 

In a previous paper [3] the pseudohomogeneous 
formulation of heat conduction in heterogeneous 
media was discussed in detail. Some of the inter- 
mediate results of the theory presented in ref. [3] will 
now be utilized in order to simplify the derivations. 
This procedure will also give an opportunity to ana- 
lyze mutual connections between the formulations, 
i.e. the pseudohomogeneous and the mixture one. In 
the above-mentioned paper it was shown that the fol- 
lowing, integral-type relation between the local tem- 
perature T(t, x 1 a!) and the mean temperature {T} 
holds : 

{o,Q+{fLT} = {T} (12) 

the mean temperatures of the components may be 
defined as 

T(t,x 14 = {mx)} 

+ 
s 

cp(x,x] d).V{T(t,x’)dx 
n 

{T}, = {&T}l~, {T)Z = {@ZT}l~Z (13) 

where v, and u2 are the volume fractions of each com- 
ponent. 

+ ss ’ lfqt,x; t’,x’l d) 
0 R 

The gradients of the characteristic functions 8, in 
definitions (10) and (11) have non-zero values only in 
the component interphases. The vectors Z, and z2 are 
related to the change in the mean temperature gradient 
in each of component of the medium due to a tortuous 
way of heat flow in each phase, and are subsequently 
called “tortuosity vectors”. The quantity f is known 
as the “interaction term” and gives the value of the 
local interchange of energy between the components 
during conduction of heat in the medium. 

x 3,’ (T(t’, x’) dx’ dt’ (14) 

where cp and y?, called “the microstructure functions”, 
are solely dependent on the microgeometry and ther- 
mal properties of the components of the hetero- 
geneous medium. Both functions can be obtained 
from solution of the integro-differential equations 
given in ref. [3]. 

The set of equations (8) and (9) cannot be solved 
by any method (either analytical or numerical) unless 
relations (constitutive relations) between zl, Q, r and 
the mean temperatures of the components are known. 
These relations constitute the “closure problem” for 
the mixture formulation of heat transfer in a het- 
erogeneous medium. However, even for the process 
of heat conduction with an arbitrary medium micro- 
structure, they are unfortunately not known exactly. 
This problem will be studied in detail in Section 3. 

If one of the components of the heterogeneous med- 
ium (for example denoted by 1) appear in the form of 
separate particles (or fibers), the characteristic func- 
tion 0, (x I d) can then be expressed as 

@,(xI4 =CQlr(xI-4 (15) 

where summation extends over all particles of the 
component for the assumed configuration d$, and the 
function 8,j is equal to unity in thejth particle and to 
zero otherwise. Now consider a point in the medium 
determined by a location vector x. For a definite con- 
figuration d one of the particles is nearest to the point 
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x and influences most the local temperature and heat In order to derive the relation between the local 
flux around it. A certain characteristic point x, has T(t, x ( d) and the mean temperature { T(t, x)} 1 of the 
been chosen inside the particle (for example the centre first component, equation (17) has been multiplied by 
of the spherical particle), and the local coordinate 0,(x I d), and ensemble-averaged. After rearranging 
system <, bound with this particle, is introduced [3] : it can be cast in the form 

m I4 = Ix-xsW)l/~. (16) 

It is obvious that 4 depends on d and may thus be 
treated as a random variable. A microdimension 1 
nondimensionalizing 5 may be understood as a mean 
interparticle distance, a cell dimension in periodic 
structures or a correlation length associated with the 
description of a random structure. If the nonlocality 
is weak then relation (14), using g, can be cast in the 
following form [3] : 

w, x I 4 = { VL x,} 

{T> = {7?, -~Ce,>-i{&Ri *V,(T) 

-P[{6,}-‘{0,cp,} :VP){T} 

+(e,)-‘Ce,~,,)a,C~)]-0(13). (23) 

The successive gradients and time derivatives (of 
growing order) for the left-hand side of equation (23) 
were then calculated and used to eliminate the per- 
tinent quantities on the right-hand side of equation 
(23). In this way the following relation between {T} 
and { 8, T} has been obtained : 

{T} = CT},-1I,.{8,)~‘V,{B,T} 

-P(& : {O,}-‘V,{&T} 

+1C1*0(X,~I~ie)dt{~(X,e,l+0(~3, (17) 

where Vf) denotes an &h-order gradient calculated in 
the global (x) coordinate system. 

The reduced “microstructure functions” (p,, 5, and 
tizO then satisfy the equations : 

where 

+x~~~~:;I~,(~,T)I-o(~~) (24) 

.[n’(~I~)e+Vlcp,(x,qId)) 

- {J.‘(rl I ~)fl-tV,cp,(x>~ I4,>1 dq (18) 

&(x,5 1~4 = - V,G(Ld i 

tizo(x,5/4 = - /V,W,rl) 

+ s G (5,~) . [+I I 4 - 
n 

{cpl) = 0 CL) = 0 {$,o> = 0 (21) 
where7 is the unit second-order tensor, 1’ = /z-i,, 
and G (5, r) and Vi are the Green function and gradi- 
ent calculated in local coordinates 5, respectively. The 
Green function is a solution of the following problem : 

Vl&VlG(5,s)+WLr) = 0 inQ 

-d,V,G(5,r).n+aG(r,r) = 0 on8R. (22) 

In the above equations S(<, q) denotes a Dirac pseudo- 
function, n is a normal, external vector to aQ, and 1, 
is a certain reference conductivity. 

X 20 = {Qi>-‘{&vL>. (27) 

Finally, substituting {T} from equation (24) into 
equation (17) the following relation was obtained : 

T(Gxl4 = {W,4),+~h(xI4 

~{~,~-‘~,{~,(~)T(~,x)}f~~[~~(~l~~ 

.{~,}~‘d,{B,(x)T(t,x)}li-0(~3) (28) 
where 

x,0 = ti20 -x20. (29) 

In an identical way the relation between T(t,x I d) 
and { T(t, x)}> can be derived. It is worth noting that 
the above relation, equation (28), can also be obtained 
directly from equation (14) by multiplying this equa- 
tion by Q,, ensemble averaging and a proper expansion 
in a power series of 1 to obtain equation (24). 

When the relations between the local temperature 
T and the mean temperatures of the components are 
known derivation of the constitutive relations is 
straightforward. In order to do that definitions (10) 
and (11) for z, and 9 were rewritten using the local 
coordinate system 5 (Appendix 1) as 

z1 = l-iz~,<~{V,T}*)~ (30) 

9 = Z-‘v,<{V,*4j*), (31) 

where ( )i means averaging over a volume of the 
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reference particle that is nearest to point x in the 
medium and { }* means ensemble averaging over all 
possible shapes of the reference particle as well as 
over all possible configurations of the neighbouring 
particles when location of the reference particle and 
its shape is fixed. Subsequently, after substitution of 
equation (2) for q and equation (28) for T into the 
above equations and making use of the following 
relatidn [3] : 

VT(t,x ] &) = V,T+l-‘V,T (32) 

expressions (30) and (31) are cast in the form 

r,(&x) = u,<{V,~,S*)r .{o}-‘V,I&Tj+W) 

= “,<{V,cp,)*), .{&P’V,{@,T)+W) (33) 

F(GX) = -&&K{V, 

.i?;~,+V,~2)}*),.{e,}~‘Vp’{e,T> 

+<{V,*VI~ZO}T{Q}-’ a,{Q,T}+W) 

= -~,~,K{V,*(~cp,+VZ 

-~+V,cp,){B,}~‘jB,cp,})}*), 

* {or}-‘Vy){Q, T} 

+<(V,.V,~~,,}*),(~)-‘d,{~,T}l+O(~). 
(34) 

Formulas similar to equation (33) can be obtained for 
the tortuosity vector z2 corresponding to the second 
component. If a relation between T and {0,T} ident- 
ical to equation (28), with 8, in equations (25)-(29) 
changed to O,, is used then z2 can be expressed as 

z,(Lx) = -v,({V,cp,}*),.{e,}-‘V,{e,T}+O(I). 

(35) 

Equation (34) can be simplified when the differ- 
ential form of equations (I 8) and (19) is utilized, i.e. 

V,.L(TfV,cp,) = 0 

v,*n(Tq, +v,& = I,V,rp,. 

Then the interaction term can be expressed as 

Y(t,x) = -I,v,({V,cp,}*), : {or}-‘Vp){&T} 

-~,~,({V,.V,~,,}*),{~}~‘~,{~,T}+O(~). (36) 

The above formula is the most general expression for 
the interaction term. Further simplifications can be 
obtained when additional assumptions are made. If it 
is assumed that the heterogeneous medium can be 
treated as statistically (i.e. on the macroscopic scale) 
homogeneous and isotropic then the following 
relation holds (Appendix 2) : 

f : VF){Q, T} = ae7 &{Q, T} (37) 

where a,, is the effective thermal diffusivity defined by 

a,,T = X,/c,, = {n(=i+v,cp,)}/{c}. (38) 

It should be noted that a relation similar to equation 

(37) is also satisfied for macroscopically anisotropic 
media (for example layered or reinforced with unidi- 
rectionally aligned fibres) when the bulk heat flow 
occurs along one of the principal axes of the effective 
conductivity tensor xe,,. Equation (37) allows for the 
elimination of Vf){Q, T} from expression (36), which 
leads to 

+~,/~,(~V,~V~~~~}*),l{~}-‘~,{~,~}+~(~) (39) 

where the notation Vrcp, = ]V,cp,] f is used for iso- 
tropic media. 

In many papers dealing with the application of the 
mixture theory to the description of heat transfer in 
heterogeneous media, the interaction term is pos- 
tulated to be proportional to the difference in the 
mean temperatures of the phases [4, 10, 221. In order 
to verify this postulate the time derivative of {6’,T} 
should be eliminated from equation (39). Multiply the 
expression for the local temperature, equation (28), 
by the characteristic function 0,(x 1 d) and ensemble 
average the product. Then the following relation 
holds : 

{&W>x)) = {b>{T>, +l{fM) 

* {Q,}-’ V,{B, T} +1’[{Q2&} : {B,}-’ Vf){O,T} 

+{Q,x,,>{Q,>P’ &CbTIl+W’h (40) 

If definitions (29), equation (37) and the relations 

{Q,%> = 0 

{&FZ> = {@,I R jT 

valid for macroscopically homogeneous and isotropic 
media are taken into account, then equation (40), 
after multiplication by - {O,} and reordering, can be 
written as 

{@,>{&T)-{Q,){&T) = ~2[{@,l ~21 >/G, 

+ {Q~hoIl &{@I T> +W3). (41) 

If, additionally, the analysis is limited to terms of 
order 1’ then elimination of a,{ 8, T} between equations 
(39) and (41) leads to the following expression for the 
interaction term : 

s(LX) = -bJ,~-z[(i I v,6”1 I >*w.f 

+wM{v, *v,hl)*>,l*[i~,l i2l >/Qcf 

+~~,~~~}l-‘[{~~}{~,~}-{~,}{~,T}l. (42) 

Now introduce a definition of the “effective (partial) 
conductivity of the Ith component” : 

L = UT+ {~,V,d/{~J> (43) 

and note that, according to Appendix 1, 

{Q,f(LX)} = ~,<{f(GX)}X. (44) 

Then, using definitions of the mean temperatures of 
the components [equations (13)] a set of equations for 
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the mixture theory of heat conduction in hetero- 
geneous media can be, finally, cast in the form 

with boundary conditions 

(46) 

(~ief.Vg{T}i).A+CI{T}, =f(t,x) i = I,2 

where the interaction coefficient W is defined by 

+n,/n,({v,.V1~20)*)ll[(i I521 )*>,/43 

The set of equations (45) and (46), approximately 
describing a heat conduction process in a hetero- 
geneous medium within the mixture formulation, can 
be solved numerically or analytically, for example 
using a method proposed in ref. [23]. The effective 
partial thermal conductivities i,,, and a,,, and the 
interaction coefficient B needed for it can be cal- 
culated after solving equations (19)-(21) for the 
microstructure functions (p,, & and $2,,. These micro- 
structure functions are the same as those appearing in 
the pseudohomogeneous formulation of the macro- 
scopic theory of heat conduction in heterogeneous 
media presented in ref. [3]. If distribution of the mean 
temperature of the first component is found from 
equation (28) the approximate distribution of the 
local temperature T(t, x 1 d) in the medium can be 
calculated for any configuration ._&. 

4. EXAMPLES OF THE APPLICATION OF THE 
THEORY 

The utility of the theory presented in the Sections 2 
and 3 can be illustrated, for example, by forecasting 
the effective properties of a heterogeneous medium, 
i.e. /2,,, II,,, and 9. However, out of these three proper- 
ties, the last is the most interesting. This happens 
because the effective conductivities of components can 
be obtained directly from a knowledge of the effective 
thermal conductivity A,, appearing in the pseudo- 
homogeneous formulation. Two relations are then 
helpful : 

X,, = a,T+(a,-a&L/a, (48) 

(;Z,cf-1,T)v,/a,+~,,,-a,nv2j~~, = 0. (49) 

These relations follow directly from the definitions of 
X,, [equation (43)] and x,r [equation (38)], and the 
properties of the characteristic functions 0,. 
Expressions (48) and (49) can also be used for cal- 
culating I,, when zc,, is known from measurements, 
which is usually the case. In the following part of 
Section 4 attention is thus focused on the interaction 
coefficient W. In all of the examples presented the 

reference conductivity 1, appearing in equation (47) 
is assumed to be equal to the thermal conductivity of 
the second component, 1,. 

4.1. Interaction coej$cient jhperiodic, laminated com- 
posite 

Consider an infinite, laminated composite with each 
component appearing in the form of identical laminae 
with a thickness corresponding to the volume fraction 
of the component. The origin of the local coordinate 
system 5 is placed in the centre of the laminae of 
component 1. An assumption is made that the bulk 
(macroscopic) heat flow is one-dimensional, occurring 
either along or perpendicular to the laminae. The 
Green function G, for the infinite space, needed for 
the solution of equations (19)-(21), can be written in 
the following form consistent with the shape of the 
laminae [24] : 

where 5, and 7, are coordinates of a point in the 
composite along an axis perpendicular to the laminae, 
a is an arbitrary constant, and His the Heaviside step 
function. The origin of the local coordinate system is 
placed in the centre of the reference lamina of com- 
ponent 1. This Green function is a solution of the 
following problem : 

where a is an arbitrary constant. 
Due to the assumption that i, = 1, integration of 

the right-hand side of equations (19) and (20) is car- 
ried out only over the volume of component 1. The 
functions cp,, F2 and I//~,, inside this component have 
been chosen as follows : 

$20 = E2o +&I<: (51) 

where C,,, D20, D2,, E,, and E2, are constants to be 
determined from equations (19)-(21), and 1, is a unit 
vector along the coordinate axis [r. It should be noted 
that, in postulating the form of the microstructure 
functions, symmetrical and antisymmetrical proper- 
ties of these functions, as discussed in ref. [3], have 
been used together with the periodicity of the com- 
posite structure. From the periodicity of the com- 
posite it also follows that, for a fixed location x, at the 
centre of the reference lamina, only one configuration 
is possible, so that, for an arbitrary functionf, 

After calculating the constants C,,, D,,, D,,, E2,, and 
E2,, and substituting expressions (51) for ‘p,, & and 
lclzO in formula (47), the following relations for the 
interaction coeffient have been obtained : 
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9” = 12[v,//z, +v,/&-‘112 

for heat flow along laminae, and 

(52) 

WI = l21,1-*[(0,-l)a~-(o~.-l)(l+(o,-l)v,)] 

+ (oc - l)cJ,(o, + olfJz)l- ’ (53) 

where &, = 1,/n,, and d, = c,/c,, for heat flow per- 
pendicular to laminae. 

Formula (52) is identical with the expression for 8 
obtained by Nayfeh [12] but by a different method. 

4.2. Interaction coefjcient for a composite reinforced 
with unidirectionally alignedjbres 

Let a composite consist of a set of identical, unidi- 
rectionally aligned fibres of circular cross-section. The 
fibres have a thermal conductivity and volumetric 
specific heat equal to II, and c,, respectively. The are 
embedded in a matrix characterized by the thermal 
properties 1, and c2. If the volume fraction of fibres is 
not too high hen the so-called “well-separated” 
model of fibre distribution can be assumed. In this 
model each fibre is surrounded by a cylindrical layer 
of the matrix. The diameter of this external layer is 
roughly equal to the distance of fibre separation 21. In 
the local coordinate system 5, with the origin located 
on the axis of the reference fibre, the surface of the 
fibre is described by a coordinate 5, (perpendicular to 
the fibre axis) equal to v, . ‘/* The composite is also 
assumed to fill the infinite space. The appropriate 
Green function G, satisfying equation (22) and con- 
sistent with the fibre geometry can then be assumed, 
according to ref. [2.5], to be in the form of a series of 
trigonometric functions in the cylindrical system of 
coordinates (<r, 9), (vi, 9) : 

+[ln(tl)-‘+ f (r1/5,)“cosnW9)1 n=* 

x H(t, -v1>/W4 
where 9 is the azimuthal angle 

(54) 

In order to solve equations (19)-(21) for the micro- 
structure functions a form for these functions inside 
the reference fibre is needed. Due to the assumed 
model of fibre distribution, the microstructure func- 
tions should be axisymmetrical, i.e. they can be written 
as 

$2 = (&+&,5:)IrI, +&,55 

$20 = E2, +E2,5: (55) 

where, from the constants C,/, D,i and E,, the constants 

D2r and Dz2 are components of an isotropic fourth- 
rank tensor. The constants discussed are determined 
from equations (19)-(21) after introducing into these 
equations expressions (54) and (55) and making use 
of the assumption that all the cells consist of a fibre 
surrounded by a matrix are identical. The explicit 
expressions for constants in equation (55) are not 
given because of their complicated, lengthy form. The = 
microstructure ftinctions v,, q2 an d $20 when sub- 
stituted into equation (47) lead to 

WI’ = 8[1/1, - (1+2/v, + In v:/11:)//2~]/f (56) 

for heat flow along fibres, and 

%%‘I = 81,ZP(fJ, -20, fa,a,) 
c 

x[(o,-1)2(v*+~,v,)+(~,-1) 

(57) 

for heat flow perpendicular to fibres. 
The expression for the interaction coefficient given 

in equation (56) is identical with the result of Maewal 
et al. [14] for the same composite geometry. 

4.3. Interaction coef$cient for a composite with dis- 
persion of spherical inclusions 

In the third example the composite is assumed to 
consist of identical, spherical inclusions of thermal 
conductivity /1, and volumetric specific heat c, embed- 
ded in a matrix of thermal properties denoted by /2, 
and c2. The distribution of the inclusions is similar to 
the previous example, i.e. “the well-separated” model 
of inclusion distribution is assumed. The separation 
of the two nearest inclusions is taken to be equal to 
21. When the local coordinate system < has the origin 
located in the centre of the reference particle (with 
coordinate 5, perpendicular to the surface of this 
inclusion) the value of 5, corresponding to the external 
surface of the inclusion is equal to vi’“. When the 
infinite space of the composite is considered the proper 
Green function consistent with the shape of the 
inclusion and satisfying conditions (22) can be found 
in ref. [25]. It can be expressed in the spherical coor- 
dinate system ([,, 9, I), (yr, 9, p’) in the form of an 
expansion of the spherical harmonics Y,,,J9,/?) as 

*H(5, --rl,)l Yhz(~, PI thug+ PIi4 (58) 

where Y,, is a complex function conjugated to Y,,, 
and 9 and fi are angles defining the location of a point 
in the local, spherical coordinate system. 

Due to the spherical symmetry of the reference 
inclusion and a layer of the matrix surrounding it, the 
microstructure functions appearing in equation (47) 
have been assumed to be in a form identical to that 
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Fig. 1. Nondimensionahzed interaction coefficient g/&,,, as 
a function of the volume fraction q of component 1 : (1) 
bulk heat flow 1. to lamina for laminated composite, (2) bulk 
heat flow 1 to fibres for unidirectionally fibre-reinforced 
composite, (3) bulk heat flow 11 to fibres for unidirectionally 
fibre reinforced composite, (4) composite with spherical 

inclusions. 

presented in equation (55). Together with the above- 

given Green function they were introduced into equa- 
tions (19)-(21) and, after manipulations similar to 
those described in the previous example, the following 
expression for the interaction coefficient was 
obtained : 

92 = 15/2,1-2v;‘3[(~C-1)(2+~1)+2(~1-1)~, 

.~,(2+“n)+2(~,-l)v,]. (59) 

As can be judged from the examples presented the 
interaction coefficient depends on the thermal con- 
ductivity gI, and the volumetric specific heat gC ratios 
of the components, the volume fraction v, and thermal 
conductivity 1, of the component existing in the form 
of particles, the characteristic microdimension 1 equal 
to the half-distance between the particles, and the type 
of microgeometry of the heterogeneous medium. It 
increases when the particle conductivity increases and 
when the characteristic microdimension I decreases. 
The influence of other parameters is shown in Figs. 
1-3. Due to the simplest form of expression for the 
interaction coefficient L%&, for the laminated com- 
posite with bulk heat flow occurring along laminae 
and its anticipated greatest value because of high ther- 
mal coupling between the lamina of two components, 
the value of all, was assumed to be the reference one 
in Figs. l-3. Thus, all the interaction coefficients were 
nondimensionalized with BjI,,,, assuming that I is the 
same for each type of composite microgeometry. The 
interaction coefficient, except for heat flow along lam- 
inae or fibres, is very sensitive to the volumetric 
specific heat ratio gC = c,/cl. Depending on cc it can 
take both positive or negative values, and even 
approach infinity. 

Equations (19)-(21) for the microstructure func- 
tions (pl, & and & can be solved for many types of 
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Fig. 2. Nondimensionalized interaction coefficient 9?/.9&,, as 
a function of the thermal conductivity ratio oi = 1,/1, (other 

symbols identical to Fig. 1). 

distribution of fibres or spherical inclusions in the 
matrix, and can allow the study of the influence of 
the details of the microstructure on the interaction 
coefficient. Examples of the influence of the cross- 
section of fibres and fibre distribution on ,@ for com- 
posites reinforced with unidirectionally aligned fibres 
and the bulk heat flow occurring along them are given 
in refs. [ 151 and [26]. 

5. CONCLUSIONS 

The method used in ref. [3] for obtaining an 
approximate, macroscopic description of heat con- 
duction in heterogeneous materials within the pseudo- 
homogeneous formulation can also be utilized in the 
study of the process when another, mixture, for- 
mulation is used. The latter formulation was presented 

0 0.5 1.0 1.5 2.0 2.5 

CllC2 

Fig. 3. Nondimensionalized interaction coefficient 9/%~1, as 
a function of the volumetric specific heat ratio 6, = c,/cZ 

(other symbols identical to Fig. 1). 
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in this paper for the two-component medium when 
the nonlocality associated with the heat conduction 
process in the heterogeneous medium is weak, i.e. 
when the variation of the mean temperatures of the 
components is slow enough. The method allowed the 
formulation of energy balance equations for the mix- 
ture formulation and the finding of the constitutive 
relations between partial heat fluxes or the interaction 
term and mean temperatures of the components. The 
partial heat flux gives a mean value of the heat flux of 
each component of the medium in any place and time, 
while the interaction term describes the amount of 
heat exchanged locally between the components dur- 
ing the heat conduction process. 

The proposed method also enabled the analysis of 
the well-known postulate that the interaction term 
depends on a difference in the mean temperatures of 
components. It was concluded that the assumption 
is really valid only if the heterogeneous medium is 
statistically homogeneous and isotropic. It is also 
valid for a statistically homogeneous but anisotropic 
medium if the b,ulk heat flow occurs along one of the 
principal directions of the effective thermal con- 
ductivity tensor, for example along or perpendicular 
to unidirectionally aligned fibres or laminae. In the 
light of this study it may also be concluded that the 
common assumption that the mean temperatures of 
components are equal in the steady-state heat transfer 
is only valid for the same conditions as mentioned 
above. 

Comparison of the presented mixture theory with 
the pseudohomogeneous formulation described in ref. 
[3] for the case of weak nonlocality of the bulk heat 
conduction process leads to the conclusion that the 
first theory is a higher-order one than the zeroth-order 
pseudohomogeneous theory known as the quasi- 
homogeneous (effective) theory. This can be justified 
by the appearance of the characteristic micro- 
dimension 1 in the final equations of the mixture 
theory. 

In the presented mixture theory the bulk properties 
of the heterogeneous medium are described by the 
effective (partial) thermal conductivities of the com- 
ponent, I,,. It was shown how these properties can be 
obtained from usually determined effective thermal 
conductivity of the medium. Finally, some examples 
of the calculation of another bulk thermal property 
of an heterogeneous medium, the interaction 
coefficient 92, were given. This coelh’cient is a pro- 
portionality factor between the interaction term and 
the difference in the mean temperatures of the com- 
ponents. Some of the results obtained happened to 
be identical with those previously presented in the 
literature, which allows one to place confidence in the 
theory and use it in other situations when strictly 
analytical solutions are not possible. 
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APPENDIX 1: SOME RELATIONS FOR THE 
ENSEMBLE AVERAGES CONTAINING THE 

CHARACTERISTIC FUNCTION 0, 

The ensemble average of a product of the characteristic 
function e,(xld) and an arbitrary functionf(t, xl&) can be 
defined as follows : 

i~~(xLf(~x)} = s,(xl~)f’(t,xl~)~(~)dd (1.1) 

where integration extends over the set of all possible con- 
figurations of the heterogeneous medium. If component 1 
exists in the form of particles (grains) then the characteristic 
function can be written as 

O,(xld) = ~Hl,(x-xjld) (1.2) 
i 

where B,, is equal to unity inside and zero outside,jth particle, 
x, is the distinguished point in the jth particle (for instance 
the centre of the spherical particle), and the summation 
extends over all particles for a certain configuration d. From 
all possible distributions of particles in the medium (con- 
figuration LZZ) a subset was chosen in which configurations 
differ only by translation of the set of x, along an arbitrary 
vector. The random event of finding the distinguished point 
of the kth particle in location xk is independent of the event 
that the distinguished point of other particles can have the 
same location : thus, equation (1.1) can be cast in the form 

k JnJ 

x J~~~xl-4~64xd~W d(-Od dx, (1.3) 

where ~(&Ix,~) is the probability density function for con- 
figuration LZZ if the position of the distinguished point of the 
kth particle is fixed, and p(xk) is the probability density 
function for the location of the distinguished point of the 
kth oarticle (the single particle distribution function). If the 
distinguished point of the kth particle can have any location 
within the medium thenp(x,) = !X’. 

Equation (1.2) is then introduced into equation (1.3). This, 
after rearranging, leads to 

x f(f> xI~P(~Ix,<.) d(~lx~i) hs (1.4) 

where xkr denotes the location of the characteristic point of 
the particle that is the nearest to point x. Noting the proper- 
ties of the function elk and a definition of the conditional 
ensemble average 

expression (1.4) can be written as 

in which integration is carried out over the volume C& of the 
particle that is nearest (for the considered configuration _,P) 
to point x. Then the right-hand side of equation (1.5) was 
divided by Q_ and multiplied by Q,, the volume of all the 
particles. This leads to the following final result : 

{@l(x).mx)j =uli<f(f>X)>,)*. (1.6) 
Statistical averaging over all possible shapes and dimensions 
of the particles was included in the conditional ensemble 
average appearing on the right-hand side of equation (1.6). 

If, instead of Q,, its gradient Vt), is considered in the ensem- 
ble average of type (1.1) then steps (1.2) and (1.3) are the 
same as in the previous derivation. They lead to a formula 

xf(t,xl~pa)p(.dIx,,)d(dlx,,)dx,,. (1.7) 

The gradient of the function ok calculated with respect to the 
particle that is nearest to point x can expressed in the form 

V&(x-x,,) = -n(x) @x,x,,) (1.8) 

where n(x) is the external unit vector to the surface of the 
kth particle and 6 denotes the Dirac pseudofunction taking 
infinite values on the surface of the kth particle. Equation 
(1.8) was subsequently introduced into equation (1.7), which 
leads to the formula 

* Pt b)f(t, XI} = -om’c n&).f’(f, x) dx,, (1.9) 
A,, {S i 

in which integration is carried out over the surface of the kth 
particle nearest (for the configuration considered) to point 
x. The use of the Green theorem and the definition of the 
local coordinate system < allows one to put equation (1.9) in 
the final form 

IVe,(x)f(kx)} = -~~,i(V,~(kx)>,j* (1.10) 

where, similarly to formula (1.6), {-}* denotes statistical 
averaging over all possible shapes, dimensions of the ref- 
erence particle and averaging over all possible distributions 
of the neighbouring particles when the location of the ref- 
erence particle is fixed. A similar result is valid whenfis a 
vector function and the product is a vector one. 

APPENDIX 2. JUSTIFICATION FOR RELATION 
(37) 

In order to justify relation (37) ensemble averaging was 
applied directly to equations (2)-(5) : 

V*{AVT} = {c&T}. (2.1) 

Subsequently the relation between local T and {O,T}, i.e. 
equation (28), was introduced to both sides of the above 
equation. When, additionally, the relation between gradients 
expressed in global and local coordinates, equation (32), was 
included then equation (2.1) can be written as 

V; {ai?;+V,&)} *V,{Q,7-} = {c} &{Q,T} (2.2) 

when only the first term in the expansion of the growing 
powers of 1 was retained. Then the formula for $,, equation 
(29), the definition of the effective thermal conductivity 

XC, = {,@+v,%)i (2.3) 

and the effective volumetric specific heat 

C,r = {c} = ciu, +c,o, (2.4) 

were introduced into equation (2.2). This leads to the fol- 
lowing expression : 

V,~;z,f~V,{t),T} = c,fa,{e,T}. (2.5) 

For statistically homogeneous and isotropic media the fol- 
lowing relation holds 

V;&T.V,{Q,T} =&rT:Vf){&T} (2.6) 

From the last two equations relation (37) follows. 


